Свойства и применение стекло: Стекло — Википедия – Стекло: основные свойства и характеристики

Содержание

Стекло: основные свойства и характеристики

С давних пор для осветления и придания жилому помещению уюта делали окна. Атак как стекло было большой редкостью, то вместо него использовались другие материалы. К счастью, в настоящее время стекло не редкость: его используют везде и для разных целей. Причем купить можно не только обыкновенное оконнное стекло, но и цветное для изготовления витражей.

Все твердые тела делят на кристаллические и аморфные. Последние обладают свойством плавиться при достаточно высокой температуре. В отличие от кристаллических тел они имеют структуру лишь с небольшими участками упорядоченно соединенных ионов, причем эти участки соединены между собой так, что образуют асимметрию.

В науке (химия, физика) стеклом принято называть все аморфные тела, которые образуются в результате переохлаждения расплава. Эти тела вследствие постепенного увеличения степени вязкости оказываются наделенными всеми признаками твердых тел. Они также обладают свойством обратного перехода из твердого в жидкое состояние.

Стеклом в обыденной жизни называют прозрачный хрупкий материал. В зависимости от того или иного компонента, входящего в состав исходной стекломассы, в промышленности различают следующие виды стекла: силикатные, боратные, боросиликатные, алюмосиликатные, бороалюмосиликатные, фосфатные и другие.

Как и любое другое физическое тело, стекло обладает рядом свойств.

Физические и механические свойства стекла

Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим помимо прочих материалов и из оксидов лития, бериллия или бора. Как правило, средняя плотность стекол (оконное, тарное, сортовое, термостойкое) колеблется от 2,24×10 в кубе — 2,9×10 в кубе кг/м3. Плотность хрусталя несколько больше: от 3,5 х 10 в кубе — 3,7 х 10 в кубе кг/м3.

Прочность. Под прочностью на сжатие в физике и химии принято понимать способность того или иного материала сопротивляться внутренним напряжениям при воздействии извне каких-либо нагрузок. Предел прочности стекла составляет от 500 до 2000 МПа (хрусталя — 700-800 МПа). Сравним эту величину с величиной прочности чугуна и стали: соответственно 600-1200 и 2000 МПа.

При этом степень прочности того или иного вида стекла зависит от химического вещества, входящего в его состав.

Более прочны стекла, включающие в свой состав оксиды кальция или бора. Низкой прочностью отличаются стекла с оксидами свинца и алюминия.

Предел прочности стекла на растяжение составляет всего 35-100 МПа. Степень прочности стекла на растяжение в большей степени зависит от наличия различных дефектов, образующихся на его поверхности. Различные повреждения (трещины, глубокие царапины) значительно снижают величину прочности материала. Для искусственного увеличения показателя прочности поверхность некоторых стеклоизделий покрывают кремнийорганической пленкой.

Хрупкость — механическое свойство тел разрушаться под действием внешних сил. Величина хрупкости стекла в основном зависит не от химического состава образующих его компонентов, а в большей степени от однородности стекломассы (входящие в его состав компоненты должны быть беспримесными, чистыми) и толщины стенок стеклоизделия.

Твердостью обозначают механическое свойство одного материала сопротивляться проникновению в него другого, более твердого. Определить степень твердости того или иного материла можно с помощью специальной таблицы-шкалы, отражающей свойства некоторых минералов, которые расположены по возрастающей, начиная с менее твердого, талька, твердость которого взята за единицу, и заканчивая самым твердым — алмазом с твердостью в 10 условно принятых единиц.

Часто твердость стекла «измеряют» с помощью шлифования, используя так называемый метод определения абразивной твердости. В таком случае ее величина устанавливается в зависимости от скорости отслаивания единицы поверхности стеклоизделия при определенных условиях проведения шлифовки.

Степень твердости того или иного вида стекла в основном зависит от химического состава входящих в него компонентов. Так, использование при создании стекломассы оксида свинца значительно снижает твердость стекла. И, напротив, силикатные стекла достаточно плохо поддаются механической обработке.

Теплоемкостью называют свойство тел принимать и сохранять определенное количество теплоты при каком-либо процессе без изменения состояния.

Теплоемкость стекла прямо зависит от химического состава компонентов, входящих в состав исходной стекломассы. Его удельная теплота при средней температуре равна 0,33-1,05 Дж/(кгхК). Причем чем выше в стекломассе содержание оксидов свинца и бария, тем ниже показатель теплопроводности. Но вот легкие оксиды, такие, например, как оксид лития, способны повысить теплопроводность стекла.

При изготовлении стеклоизделий следует помнить о том, что аморфные тела, обладающие низкой теплоемкостью, остывают значительно медленнее, чем тела с высоким показателем теплоемкости. У таких тел наблюдается также увеличение количества теплоемкости с повышением внешней температуры. Причем в жидком состоянии этот показатель растет несколько быстрее. Это характерно и для стекол различных типов.

Теплопроводность. Таким термином в науке обозначают свойство тел пропускать через себя теплоту от одной поверхности до другой, при условии, что у последних разная температура.

Известно, что стекло плохо проводит тепло (кстати, это свойство широко используется в строительстве зданий). Уровень его теплопроводности в среднем составляет 0,95-0,98 Вт/(м х К). Причем наболее высокий показатель теплопроводности отмечен у кварцевого стекла. С уменьшением доли оксида кремния в общей массе стекла или при замене его на любое другое вещество уровень теплопроводности понижается.

Температура начала размягчения — это такая температура, при которой тело (аморфное) начинает размягчаться и плавиться. Самое твердое —- кварцевое — стекло начинает деформироваться только при температуре 1200-1500 °С. Другие типы стекол размягчаются уже при температуре 550-650 0С. Эти показатели важно учитывать при различных работах со стеклом: в процессе выдувания изделий, при обработке краев этих изделий, а также при термической полировке их поверхностей.

Величина температуры начала плавления того или иного сорта и вида стекла определяется химическим составом компонентов. Так, тугоплавкие оксиды кремния или алюминия повышают температурный уровень начала размягчения, а легкоплавкие (оксиды натрия и калия), напротив, понижают.

Тепловое расширение. Этим термином принято обозначать явление расширения размеров того или иного тела под воздействием высоких температур. Эту величину очень важно учитывать при изготовлении стеклоизделий с различными накладками по поверхности. Материалы для отделок следует подбирать так, чтобы величина их теплового расширения соответствовала тому же показателю стекломассы основного изделия.

Коэффициент теплового расширения стекол прямо зависит от химического состава исходной массы. Чем больше в стекломассе щелочных оксидов, тем выше показатель температурного расширения, и, наоборот, присутствие в стекле оксидов кремния, алюминия и бора снижает эту величину.

Термостойкостью определяется способность стекла не поддаваться коррозии и разрушению в результате резкой смены внешней температуры. Этот коэффициент зависит не только от химического состава массы, но и от размера изделия, а также от величины теплоотдачи на его поверхности.

Оптические свойства стекла

Преломление света — так в науке называют изменение направления светового луча при его прохождении через границу двух прозрачных сред. Величина, показывающая преломлние света стекла, всегда больше единицы.

Отражение света — это возвращение светового луча при его падении на поверхность двух сред, имеющих различные показатели преломления.

Дисперсия света — разложение светового луча в спектр при его преломлении. Величина дисперсии света стекла прямо зависит от химического состава материала. Наличие в стекломассе тяжелых оксидов увеличивает показатель дисперсии. Именно этим свойством и объясняется явление так называемой игры света в хрустальных изделиях.

Поглощением света определяют способность той или иной среды уменьшать интенсивность прохождения светового луча. Показатель поглощения света стекол невысок. Он увеличивается лишь при изготовлении стекла с применением различных красителей, а также особых способов обработки готовых изделий.

Рассеяние света — это отклонение световых лучей в различных направлениях. Показатель рассеяния света зависит от качества поверхности стекла. Так, проходя сквозь шероховатую поверхность, луч частично рассеивается, и потому такое стекло выглядит полупрозрачным. Это свойство, как правило, используют при изготовлении стеклянных абажуров для ламп и плафонов для светильников.

Химические свойства стекла

Среди химических свойств необходимо особо выделить химическую стойкость стекла и изделий из него.

Химической стойкостью в науке называют способность того или иного тела не поддаваться воздействию воды, растворов солей, газов и влаги атмосферы. Показатели химической стойкости зависят от качества стекломассы и воздействующего агента. Так, стекло, не подвергающееся коррозии при действии воды, может деформироваться при воздействии щелочных и солевых растворов.

структура, свойства, применение (стр. 1 из 3)

СТЕКЛО: СТРУКТУРА, СВОЙСТВА, ПРИМЕНЕНИЕ

ВВЕДЕНИЕ

Стекло является самым широко применяемым материалом в быту, строительстве, на транспорте благодаря своим уникальным качествам: прозрачности, твердости, химической устойчивости к активным химическим реагентам, относительной дешевизне производства. Без него невозможно изготовить оптические приборы, телевизоры, космические корабли и др. Несмотря на успехи в создании новых материалов широкого назначения, неорганические стекла после камня, бетона, металла прочно занимают одно из главных мест среди используемых в практике.

Человеку с древнейших времен известны природные стекла (янтарь, стекла вулканического происхождения), а вырабатывать стекла он научился несколько тысяч лет назад. Производство стекла совершенствовалось на протяжении веков, но долгое время этот процесс определяло искусство мастеров, опыт которых передавался из поколения в поколение. В настоящее время наряду с ручным трудом в стеклоделии применяются механизированные методы формования стеклоизделий, которые обеспечивают массовый выпуск продукции. В народном хозяйстве ориентировочно можно выделить следующие основные области применения стекла: строительная промышленность, производство стеклотары, стеклоаппаратов, химической посуды; электровакуумная промышленность, использование стекла в качестве декоративного материала, оптическая промышленность и приборостроение.

Больше половины всего выплавляемого стекла перерабатывается на листы для остекления зданий. Широкое применение в строительстве нашли изделия из стекловолокнистых материалов (стеклянная вата, маты, жгуты и др.), которые используются в качестве тепло- и звукоизоляторов. Они не гниют и не плесневеют, обладают малым объемным весом, огнестойкостью и вибростойкостью [1].

Около трети всей стекольной продукции — сосуды самого разнообразного типа, фасона и назначения. Замечательные декоративные свойства стекла (способность воспринимать различные окраски, передавать игру света, разнообразие в переходах от кристальной прозрачности через все степени замутнения до полной непрозрачности) обусловили существование особой группы изделий, объединяемых общим названием «художественное стекло». Сюда относится художественная столовая посуда, монументальные стеклянные изделия (барельефы, торшеры, вазы, люстры и др.) и разнообразные отделочные материалы (плитки и листы для облицовки стен, полов зданий, карнизы, фризы и др., использование стекла в витражах). Одной из важных отраслей художественного стеклоделия является производство смальт (непрозрачных стекол) широкого ассортимента. Эти стекла используются при создании монументальных стенных панно в технике мозаичной живописи, родственной технике витража [2].

В виде стеклоэмалей, непрозрачных тонких стекловидных слоев различных цветов, стекло используется как защитное покрытие, предохраняющее металлические изделия от разрушения и придающее им внешний вид, удовлетворяющий эксплуатационным и эстетическим требованиям. Стеклоэмали применяются при изготовлении химической и пищевой аппаратуры, посуды, изделий санитарной техники, труб, вывесок, облицовочных плиток, ювелирных изделий [3] .

Оптическая промышленность и оптическое стекло позволили создать современные точнейшие оптические приборы во всем разнообразии их типов и назначений (обычные очки, микроскопы, телескопы, фото- и киноаппараты и др.).

Особо чистое кварцевое стекло используется для изготовления волоконных световодов при создании волоконно-оптических линий связи, позволяющих передавать большие объемы информации. Отдельный класс стекол образуют так называемые лазерные стекла. Это многокомпонентные стекла различной природы (силикатные, фосфатные, фторбериллатные, боратные, теллуритные и др.), активированные неодимом. Лазеры могут быть миниатюрными, как, например, используемые в медицине, и могут представлять собой мощные системы, применяемые в термоядерном синтезе. Лазеры применяются также в научных исследованиях, геодезии, при точной обработке металлов [4].

В ходе дальнейшего изложения будут дополнительно приведены еще некоторые примеры применения стекла как материала.

Из краткого обзора областей применения стекла очевидно, что необходимо изготавливать стекла, разные по свойствам: особо химически стойкие, особо прочные механически, обладающие определенными коэффициентами термического расширения, заданными оптическими и электрическими константами и др. Поэтому неудивительно, что исследователи прилагают много усилий для постижения природы стекла, выяснения влияния разнообразных факторов на его различные свойства.

В России становление науки о стекле и промышленного стеклоделия связано с именами выдающихся ученых М.В. Ломоносова и Д.И. Менделеева. М.В. Ломоносов первым в мировой практике стеклоделия обратил серьезное внимание на взаимосвязь свойств стекол и их химического состава. По его инициативе в 1754 году была отстроена первая стекольная фабрика. Заслугой Д.И. Менделеева являются предвидение полимерного строения SiO2 и развиваемые им представления о химической природе стекла, которое он рассматривал в общем контексте разработки таких фундаментальных понятий химической науки, как определенное-неопределенное соединение, раствор, сплав и т.д.

СТЕКЛООБРАЗНОЕ И КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЯ

Обычно понятие «стекло» определяется не просто как материал, а как некоторое особое состояние твердого тела, стеклообразное состояние, противопоставляемое кристаллическому. Известно, что одно и то же вещество может быть газообразным, жидким и кристаллическим. Для каждого такого состояния характерна своя группа специфических признаков. Стекло же не может быть полностью отнесено по совокупности признаков ни к одному из них. Рассмотрим вещества, находящиеся в указанных агрегатных состояниях, с точки зрения взаимного расположения частиц (атомов, ионов, молекул), образующих вещество, и их взаимодействия между собой. При очень высоких температурах многие неорганические вещества существуют в виде газа. В газе частицы вещества располагаются и движутся хаотически. При низком давлении, например атмосферном, взаимодействия между частицами чрезвычайно слабы. При понижении температуры газ конденсируется в жидкость, которая при дальнейшем снижении температуры кристаллизуется. В жидкостях и кристаллах частицы располагаются несравненно более компактно, между ними действуют значительные по величине силы, которые создают известную упорядоченность в расположении атомов или молекул: в кристаллах почти идеальную, в жидкостях — существенно менее полную. Основной особенностью кристаллов является то, что их можно получить путем повторения элементарной ячейки во всех трех направлениях. Элементарная ячейка состоит из некоторого числа атомов (ионов, молекул), строго определенным образом расположенных друг относительно друга. Такое повторение элементарной ячейки называют дальним порядком. В жидкостях нельзя выделить такой элементарной ячейки. Для жидкости можно с уверенностью говорить о существовании ближнего порядка, то есть о ближайших соседних частицах, окружающих центральную. Таким образом, для жидкости характерен ближний порядок, но нет дальнего. Мы воспользуемся здесь широко применяемым определением стекла: стекло — это такое состояние аморфного вещества, которое получается при затвердевании переохлажденной жидкости. Стекло неравновесно по отношению к кристаллическому состоянию, которое может реализовываться при том же составе и при тех же внешних условиях. Отличие стекла от кристаллов состоит в отсутствии периодичности строения, в отсутствии дальнего порядка в структуре.

Кроме традиционного пути получения стекол — охлаждения расплава, стали широко применяться и другие способы получения стекол. Сюда относятся стеклообразные пленки, получаемые напылением из газовой фазы; «метамиктные стекла», образующиеся под воздействием ударных давлений и при бомбардировке кристаллов нейтронами; стекла, получаемые по зольгель-технологии. В этой связи неудивительно, что разные исследователи дают различные определения стекла, отличные от приведенного нами. При этом они руководствуются выборочными признаками стеклообразного состояния. За основу принимаются, например, структурные признаки, способ получения стекла, тип химической связи и т.д. Терминологическая дискуссия по этому вопросу ведется уже давно, и она далека от завершения, что, безусловно, свидетельствует о сложности объекта исследования [4].

СТРУКТУРА СТЕКОЛ

Приведенное выше определение стекла, связанное с традиционным способом его производства и с общими сведениями о его структуре, привело к двум различным направлениям в развитии теории стеклообразного состояния. А.А. Лебедев предположил, что структуру стекла образуют субмикроскопические кристаллы — кристаллиты, расположенные друг относительно друг друга хаотическим образом [6]. Согласно кристаллитной гипотезе стекло является химически однородным.

Исследование стекол методом рентгеноструктурного анализа явилось качественным скачком в понимании природы стеклообразного состояния [6]. Согласно полученным данным было показано следующее: 1) кристаллиты содержат 1 — 2 элементарных ячейки, да и то искаженных, то есть терялся смысл самого понятия «кристаллит», 2) высказано предположение о химически неоднородном строении стекла. Исторически кристаллитная гипотеза сыграла большую роль в понимании природы стеклообразного состояния, но ее пригодность для описания большинства стеклообразных веществ оказалась невелика.

Наряду с кристаллитной гипотезой получили развитие представления шведского ученого В. Захариасена [6], который на основе успехов кристаллохимии силикатов высказал предположение, что структуру оксидных стекол образуют элемент-кислородные полиэдры, аналогичные таковым в кристаллах, но их сочленение не имеет строгого порядка и периодичности, как в кристаллах. Было установлено, что рентгенограммы кварцевого стекла лучше всего интерпретируются в рамках модели непрерывной беспорядочной сетки тетраэдров SiO4 . Атом кремния, окруженный четырьмя атомами кислорода, и отражает ближний порядок в структуре стекла. Для сравнения на рис. 1а, б схематично даны структура кристаллического кварца и структура стеклообразного кварца в виде беспорядочной сетки. Поскольку на рисунке представлена схема в двумерном изображении, каждый атом кремния окружен только тремя атомами кислорода. Понятно, что в реальном тетраэдре один атом кремния и три атома кислорода не могут находиться в одной плоскости. Поэтому схема дает несколько искаженную картину действительных представлений В. Захариасена. Тем не менее она правильно отражает основные идеи его подхода. Как показали многочисленные рентгеновские и нейтронографические (основанные на изучении рассеяния нейтронов стеклом) исследования, наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол, таких, как B2O3 , SiO2 , As2O3 , Si, B, и некоторых других. Исследования поведения стеклянных электродов в растворах электролитов также позволили высказать определенные суждения о ближнем порядке в стеклах. На базе экспериментального материала по изучению поведения электродов из разных стекол в растворах электролитов и его теоретического осмысления автором был предложен метод изучения элементов структуры стекла по типу комплексных ионов, таких, например, как [AlO4/2]1 — , [BO4/2]1 — [7].

Волшебство стекла. Использование стекла в магии и целительстве.

Дорогие друзья и гости, в этой записи я хочу рассказать вам о малоизвестных и уникальных свойствах стекла, о его чудесной энергетике и о его применении в магии и целительстве, а также о происхождении стекла, составе и физических свойствах. Здесь будет изложен достаточно большой объем информации. На сегодняшний день написано множество книг и статей о целебных и магических свойствах натуральных камней, металлов, дерева, но о подобных свойствах стекла информации незаслуженно мало, а возможности стекла и спектр его применения в магии и целительстве достаточно широк, от знаменитого хрустального колдовского шара, до применения стекла в целительстве. Для начала, в качестве предисловия изложу свою позицию по поводу некоторых общепринятых устоев среди современных эзотериков.

Вместо предисловия. (О предрассудках, фантазиях и натуральности)

Волшебство стекла. Использование стекла в магии и целительстве., фото № 1

По некоторым причинам чисто психологического характера многие практики избегают использования стекла ввиду его мнимой «ненатуральности», что совершенно напрасно. В древние времена колдуньи и маги так не считали и отдавали должное стеклу. Сегодня в определенных широких кругах модно всё «био», «эко» и «всё натуральное», а также распространено пренебрежительно-негативное отношение ко всему искусственному ( замечу, что от слова «Искусство» = мастерство) и часто очень незаслужено. Металлы (как и стекло) тоже ведь выплавлены человеком, но назвать их ненатуральными никому в голову не приходит. В любом сообществе (научном ли, эзотерическом ли или любом другом) есть огромное и особо почетное место для различных догм, предрассудков и стериотипов, которые многие консерваторы готовы защищать как «священную традицию» до последней капли крови и здравого смысла (как и в средние века, и тысячи лет назад). Но мы с вами ведь не такие, мы смотрим вперед с интересом, надеждой и трепетом, а не со страхом и отрицаниемВолшебство стекла. Использование стекла в магии и целительстве., фото № 2

Часто бывает, что под действием живого творческого воображения многим натуральным материалам приписываются чудодейственные волшебные свойства, которых у них нет или того хуже — абсолютно противоположные свойства тем, что у них имеются. А ненатуральным — ужасные разрушительно-опустошительные свойства, которыми они вовсе и не обладают. Это всё равно, что считать всё черное злом, а всё белое добром.

Невозможно также согласиться и с утверждением многих опытных(!) практиков о том, что искусственные материалы не имеют своей энергетикиВолшебство стекла. Использование стекла в магии и целительстве., фото № 3 . Друзья, я не хочу никого обидеть или подвергнуть сомнению чей-либо авторитет и опыт(каждый вправе ошибаться), но в нашей Вселенной всё, что существует имеет свою энергетику (тот, кто может это видеть с помощью глаз либо как-то ещё — поймет). Если что-то её не имеет — значит это галюцинация, а не предмет или вещество. Если что-либо сделано мастером, то оно плюс к своей энергетике имеет ещё и часть энергии мастера. Понятия «плохая» и «хорошая», «позитивная» и «негативная» абсолютно относительныВолшебство стекла. Использование стекла в магии и целительстве., фото № 2! Мы все знаем мудрую забавную пословицу : «Что русскому хорошо, немцу — смерть». То что излечит одного, может быть ядом для другого, от головной боли и от геморроя — разные лекарства)) Утверждать об абсолютной «плохости» энергий каких-то материалов некорректно. Это как и предрассудок относительно музыки, что якобы симфонии исцеляют, а хэви метал — ввергает в болезнь и депрессию, что не является правдой ни на каплю, ибо для каждого человека существуют свои подходящие гармонизирующие музыкальные вибрации : для кого симфонии, для кого джаз, а для кого металл, главное, чтоб это была именно Музыка, а не дисгармоничная кокофония и не беспорядочный набор шумов. Подробнее о вибрациях я напишу в другой записи.

Волшебство стекла. Использование стекла в магии и целительстве., фото № 5Волшебство стекла. Использование стекла в магии и целительстве., фото № 6Волшебство стекла. Использование стекла в магии и целительстве., фото № 7

Что можно считать натуральным? Несомненно, то, что создано Природой. Минералы, металлы, растения, животные — всё это, созданное Природой состоит из атомов. Кем созданы атомы? Природой нашей Вселенной! Атомы углерода, кислорода, водорода, кремния(преимущественно из которых люди делают синтетику) — не исключение, они также созданы Природой, но такие соединения из этих атомов как пластики на Земле не встречаются (!нельзя сказать что во всей природе) и поэтому для нас — землян они конечно же не натуральные. Это вовсе не означает их вредность для нас, «плохую» энергетику и уж тем более отнятие энергии у нас или у натуральных материалов! Для использования в бытовых и пищевых целях производят высококачественные (в т.ч. биоразлагаемые) безопасные пластики, но некоторые пластики(дешевые, низкого качества) могут причинить значительный ущерб здоровью — они выделяют вредные вещества, способные вызвать аллергию и отравления, поэтому при выборе к пластикам стоит отнестись очень внимательно. Применять или не применять пластики в своей работе — это личный выбор каждого, обусловленный морально-этическими и эстетическими аспектами. Я лично ничего плохого не могу сказать об энергетике большинства пластиков — она нейтральна, и это свойство часто бывает нужным и полезным, например, капроновая нить — во много раз превосходит по прочности натуральные, к тому же она не накапливает энергию в таком объеме, как натуральные нити и сильно не «загрязняется». Поэтому считаю вполне приемлемым добавлять полимеры как дополнительные или скрепляющие элементы туда, где они не помешают иили будут полезны. Если задуматься,а чего в жизни людей натурального кроме тел и самой жизни?… Если мы создали некий предмет из натурального материала (кости, камня, дерева), можно ли его назвать натуральным? Он ведь не существовал в природе, пока мы его не создали…Материал — природный, а предмет — искусственный… Так можно рассуждать долго и многое понять в ходе рассуждений, но сейчас вернемся к главной теме — стеклу.
В отличие от пластиков, о стекле можно легко и уверенно сказать, что оно натуральное(кварцевое) или в большей части натуральное(силикатное и др.). Стекло достаточно часто встречается в природе Земли в качестве обсидианов, тектитов и др. По сути стекло — это переплавленный кварцевый песок — двуокись кремния (с добавлением соды, извести, красящих соединений — металлов или их оксидов) . Кварцевое стекло состоит только из кремнезёма высокой чистоты. Хрусталь отличается от обычного стекла тем, что содержит большой процент оксида свинца, что придает ему более высокое качество преломления и рассеивание света, повышает его эстетические качества.

История.

Волшебство стекла. Использование стекла в магии и целительстве., фото № 8

Стекло – один из самых древних и универсальных по своим свойствам материалов, известных человеку. Человечество знакомо со стеклом очень давно. Официальная история склоняется к возрасту рукотворного стекла примерно в 5 тысяч лет. Целых 5-6 тыс. лет назад искусственно созданное стекло уже существовало в древнем Египте. Археология Двуречья, в особенности — Древних Шумера и Аккада, склоняет исследователей к тому, что немногим менее древним образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датируемую периодом династии Аккада, то есть имеет возраст более 4 тысяч лет. Отмечают, что на территории Старо-вавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. Изделия из стекла, найденные в Японии и Индии, произведены примерно 2 тысячи лет назад. Русским мастерам секреты стеклянного производства были знакомы более тысячи лет назад. В те времена щёлочь, песок и известь были сырьём для получения стекла. В качестве щёлочи использовали золу растений или соду. Но единого мнения о времени и месте появления стекла у учёных нет.
Одна из легенд о происхождении стекла повествует о том, что финикийские купцы готовили пищу на песчаном берегу во время стоянки. Очаг они сложили не из камней, а их кусков африканской соды. Топливом служила солома. Проснувшись утром, они обнаружили на пепелище слиток из стекла.

Какое бывает стекло. Состав стекла.

Стеклоаморфное тело, получаемое переохлаждением расплава, который состоит из оксида кремния и/или др. окислов. Стекло — твердое, однородное, хрупкое, в той или иной степени прозрачное тело с раковистым изломом. Обычно понятие «стекло» определяется не просто как материал, а как аморфное состояние твердого тела — стеклообразное состояние, противопоставляемое кристаллическому. По своей структуре стеклообразное состояние занимает промежуточное положение между кристаллическими веществами и жидкими и не может быть полностью отнесено по совокупности признаков ни к одному из них. Стекло бывает естественнымии искусственными.

Естественное стекло может образоваться, при извержении вулкана, при падении метеорита или попадании молнии в залежи кварцевого песка. К природному стеклу относится обсидиан, тектит, кварцевое стекло из Ливийской пустыни. В природе мало возможностей для образования естественного стекла, чтобы удовлетворить нужды человечества, поэтому люди давно сами научились получать искусственное стекло.

Тектит Стекло Ливийской пустыни Обсидиан

Волшебство стекла. Использование стекла в магии и целительстве., фото № 9Волшебство стекла. Использование стекла в магии и целительстве., фото № 10Волшебство стекла. Использование стекла в магии и целительстве., фото № 11

Искусственное стекло — рукотворное, различается в зависимости от того, какой окисел является основным компонентом. Существуют силикатные стёкла (SiO2), боратные (В203), фосфатные (Р205) и комбинированные (боросиликатные и др.).Наиболее распространено силикатное стекло. Основная его составная часть – двуокись кремния (SiO2). На 70-75% стекло состоит из неё. Получают двуокись кремния из кварцевого песка. Окись кальция (CaO) – второй компонент стекла, придающий ему химическую стойкость и блеск. В давние времена источником окиси кальция служили морские раковины или зола деревьев, так как люди не были знакомы с известняком. Кроме этих двух компонентов, в состав стекла входят оксид натрия (Na2O) и оксид калия (K2O), которые необходимы для плавки стекла. Источниками оксидов служат сода (Na2CO3) и поташ (K2CO3). Если стекло состоит только из кремнезёма высокой чистоты, оно называется кварцевым.

По физическим свойствам стёкла подразделяются на обычные, жаростойкие и цветные.
Известны три группы обычных стёкол: иззвестково-натриевое, известково-калиевое и известково-натриево-калиевое. Известково-натриевое, или содовое, стекло применяется для выпуска оконных стёкол, посуды. Высокая термостойкость известково-калиевого, или поташного, стекла позволяет применять его в производстве аппаратуры и высококачественной посуды.Известково-натриево-калиевое стекло обладает высокой химической стойкостью. Наиболее часто применяется в производстве посуды. Хрупкость – главный недостаток обычных стёкол. Для расширения области применения обычного стекла его закаливают и получают закалённое стекло, которые называется сталинит. Из обычного стекла создают также триплекс – многослойное стекло.
Жаростойкие стёкла применяются в изделиях, которые эксплуатируются в особых условиях. К жаростойким стёклам относятся боросиликатное стекло, лабораторное стекло и ситаллы. Из такого стекла производится также прекрасная жаростойкая кухонная посуда. Такая же высококачественная посуда может быть изготовлена и из лабораторного стекла.
Цветное стекло. После застывания стеклянная масса имеет голубовато-зелёный или желтовато-зелёный оттенок. Но если ввести в шихту некоторые оксиды металлов, которые в процессе варки стекла изменяют его структуру, то после остывания стекло сможет выделять определённые цвета из проходящего через него светового спектра.Такие стёкла применяются для изготовления художественных изделий, витражей, посуды.

Волшебство стекла. Использование стекла в магии и целительстве., фото № 12

Стекло соединило в себе две стихии: огонь и лёд. Огонь помогает стеклу появиться на свет. На лёд стекло становится похожим, когда застывает в форме какого-нибудь изделия. Современным людям невозможно представить свою жизнь без стекла. Оно окружают нас повсюду: дома, в транспорте, на работе и на отдыхе. Невозможно назвать хотя бы одну отрасль промышленности, в которой стекло не использовалось бы.

Волшебные и лечебные свойства стекла.

Стекло имеет удивительные и уникальные свойства! Ещё с древности в Индии стекло применялось в цветолечении. За отсутствием искусственных источников света, индийцы использовали окрашенные стекла для придания окраски естественному солнечному свету. Стеклянные сферы разных чистых цветов идеально подходят для настройки чакр, гармонизации энергий и медитации.
В магии, стекло испокон веку применяют для изготовления — магических зеркал, всем известных магических хрустальных шаров, магических призм, кубов, бус, четок, волшебных фонарей, волшебных палочек, алхимической посуды и многого другого.
Магическое применение стекла довольно широко.
Стеклянные шары и граненое стекло являются сильнейшими инструментами для направления и трансформации энергетических потоков. По собственным наблюдениям могу сказать, что у стекла нет (или ПОЧТИ нет?) свойства самостоятельно накапливать «тяжелые» энергии из окружающего пространства, оно не «загрязняется», как дерево, кость, воск, некоторые минералы и материалы, но отлично заряжается солнечной энергией. Заряженные на солнце цветные стекла можно использовать в лечении и оздоровлении организма.
Энергетика стекла соответствует чакре АДЖНА. Аджна отвечает за наше ментальное тело, и всё, что с ним связано: на физическом плане — это слух, зрение, обоняние, правильная работа мозга, способность к концентрации, осознанное восприятие окружающего мира, память, ум, познавательные способности; на тонком плане — это духовное развитие, интуиция, эмпатия, способность к познанию мира и себя, степень осознанности, понимание своего Пути, альтернативные способы восприятия информации, стремление к гармонии, совершенству и обретению цельности. С помошью прозрачного синего стекла (как дополнительно при серьезных нарушениях, так и самостоятельно при лёгких) возможно лечение указанных органов от заболеваний(в т.ч. коррекция нарушений психологического характера), связанных с нарушением работы этой чакры. Также стекло соответствующего цвета можно применять для работы с другими чакрами. У каждого свои секреты работы со стеклом.
В цветной стеклянной посуде можно приготавливать лечебную цветную СОЛНЕЧНУЮ ВОДУ. Цветная вода может быть заряжена определенным цветом путем ее обработки цветной лампой либо воздействием солнечных лучей на кусочек цветного стекла, прикрепленного на окне перед прозрачным сосудом с водой. Солнечные лучи, проходя через цветное стекло, заряжают своим цветом воду. Для заряжения цветной воды необходимо от 1 до 3 часов. Необходимо учитывать, что цветная вода, заряженная конкретным цветом, хранится определенное количество времени, например зеленая цветная вода хранится около 3 суток, а фиолетовая – в течение недели. В настоящее время лечение цветной водой широко используется в цветотерапии.
Энергетика любого стеклянного артефакта, талисмана или аксессуара также обусловлена цветом, прозрачностью и его формой, но основные свойства изначального материала всегда остаются.
Считается, что стихия стекла — Вода, у стекла много общих свойств со льдом. Стекло хорошо очищает тонкие тела от энергетических загрязнений как и вода. Стекло обладает легкой, чистой, струящейся универсальной энергией (подобно воде), которую можно трансформировать и направлять как вам нужно. Если энергия неправильно подобранных камней может навредить человеку или не сработать как надо, то со стеклом вред и отсутствие эффекта исключены.
В заключение скажу, что не стоит верить тому, кто понапрасну говорит, что стекло (по причине рукотворности или ещё почему-то) не обладает никакими полезными свойствами только потому, что они не известны (не видны или не очевидны) говорящему. Как вы видите спектр возможностей применения стекла в эзотерических практиках и нетрадиционном целительстве достаточно широк, но многие его свойства игнорируются, забываются и часто просто не используются, но это ещё не повод, чтобы в них усомниться и тем более отказаться от использования этого чудесного материала в своей практике.

Волшебство стекла. Использование стекла в магии и целительстве., фото № 13

Желаю вам всего доброго!

Свойства стекла

Свойства стекла

Шухтин Ю.Д. 1

1МОУ «Средняя общеобразовательная школа №1» города Котласа, 6 класc

Кривошапкина В.В. 1

1МОУ «Средняя общеобразовательная школа №1» города Котласа,

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Научно-исследовательская работа

Химия

СВОЙСТВА СТЕКЛА

Выполнил:

Шухтин Юрий Дмитриевич

учащийся 6 класса

МОУ «Средней

общеобразовательной

школы № 1» МО «Котлас»,

Архангельской области

Руководитель:

Кривошапкина

Валентина Владимировна

учитель МОУ «Средней

общеобразовательной

школы № 1» МО «Котлас»,

Архангельской области

Содержание

Введение………………………………………………………………….3

Теоретическая часть……………………………………………..3

Распространение в природе……………………………………..3

История стекла……………………………………………………4

Физические свойства…………………………………………….5

Состав стекла……………………………………………….……..6

Основные виды стекла и их применение ……………….…..….6

Практическая часть………………………………………… ..…7

Изучение школьной коллекции «Стекло»………………….…..7

Растворение стекла ……………………………………….….…..7

Плавление стекла ……………………………………………..….8

Получение цветных стекол…………………………………..…..8

Матирование стекла……………………………………………….8

Выводы……………………………….…………………………….8

Заключение……………………………………………………………….9

Литература…………………………………………..…….……………..10

Приложения………………………………………………………………11

Введение

Стекло — вещество и материал, один из самых древних и, благодаря разнообразию своих свойств, универсальный в практике человека. Стекло является самым широко применяемым материалом в быту, строительстве, на транспорте благодаря своим уникальным качествам: прозрачности, твердости, химической устойчивости к активным химическим реагентам, относительной дешевизне производства. Без него невозможно изготовить оптические приборы, телевизоры, космические корабли и др. Для своей работы я выбрал именно эту тему, так как считаю, что история возникновения и познания этого вещества тесно связана с историей человечества. Кроме того, эта тема меня заинтересовала, и я хотел бы как можно шире раскрыть ее.

Цель работы: доказать, что стекло – это уникальный материал, обладающий удивительными свойствами.

Для достижения заданной цели были поставлены следующие задачи:

1. Узнать историю открытия стекла

2. Изучить технологию изготовления стекла

3. Изучить состав стекла

4. Познакомиться с различными видами стекла

5. На основе полученных теоретических знаний выполнить практическую работу по изучению свойств стекла

Гипотеза: Стекло – материал, обладающий необычными свойствами.

При подготовке исследования я пользовался материалами:

Научных и публицистических изданий;

Периодических изданий;

Данными, опубликованными в сети Интернет.

3

Теоретическая часть

1.1 Распространение в природе

Как известно, стекло, используемое нами в повседневной жизни, – материал искусственный. Древние люди могли держать в руках стекло, даже не имея представления о его приготовлении, поскольку наряду с искусственным существует и природное (вулканическое) стекло – перлит, обсидиан. Из такого природного стекла делали режущий

инструмент и украшения. Обсидиан представляет собой застывшую вулканическую лаву или оплавленную скальную породу. Именно обсидиан использовался первобытными людьми для изготовления различных режущих инструментов, а также украшений.(1)

1.2 История стекла

История стекла уходит в глубокую древность. Известно, что в Египте и Месопотамии его умели делать уже 6000 лет назад. Вероятно, стекло начали изготавливать все же позже, чем первые керамические изделия, так как для его производства требовались более высокие температуры, чем для обжига глины. Если для простейших керамических изделий было достаточно только глины, то в состав стекла необходимо минимум три компонента.

Существует легенда, что первыми изобрели стекло финикийцы. Возвращаясь с дальнего плавания, они решили остановиться на близлежащем острове. Развели костёр для того, чтобы приготовить еду. А так как камней не было, они поставили под котёл глыбы соды. Через некоторое время финикийцы заметили, что ракушки, сода и песок превратились в какую-то жидкость. Это и было стекло. Но у этой легенды существует опровержение: учёные доказали, что при открытом огне нельзя добиться температуры плавления компонентов.

Изделия из стекла так же, как и из керамики, практически не подвергаются атмосферным воздействиям и хорошо сохраняются даже под слоем земли. Эти изделия оказались важнейшими документами далекого прошлого. Они донесли до нас бесценную информацию об уровне культуры и

4

техники древних народов. Благодаря стеклу до нашего времени дошли величайшие художественные произведения различных эпох культуры человечества.

Несмотря на то что возраст стеклоделия оценивается в 6 тыс. лет, прозрачное и бесцветное стекло люди научились варить лишь на пороге новой эры. До этого производилось непрозрачное окрашенное в различные тона стекло и из него изготавливались главным образом мелкие изделия: бусы, браслеты, пуговицы, кольца, печатки, шахматные фигуры и др. Стеклодувы античной эпохи начали широко применять холодную обработку стекла: рельефную резьбу, гравировку, шлифовку. Как только было получено прозрачное стекло, стеклоделы стали стремиться изготовить из него оконные пластины. Ученые предполагают, что оконное стекло вначале было цветным. Это объясняется тем, что бесцветное стекло получить было весьма непросто, так как сырье обычно содержит различные примеси, которые придают стеклу окраску. Особенно часто в

сырье присутствуют соединения железа. Получение пластин для остекления окон оказалось весьма непростым делом. Изготовление полых изделий довольно сложной формы путем выдувания для человека было более простой задачей, чем получение листового стекла. Эта задача была решена лишь к концу средневековья. При раскопках Помпеи, погребенной под пеплом вулкана Везувия в 79 г. н.э., было установлено, что в очень редких случаях в окна были вставлены пластины стекла, которые были довольно толстыми. По-видимому, тонкое листовое стекло итальянские стеклоделы еще не научились делать.

Считают, что метод выдувания так же, как и способ варки прозрачного стекла, был открыт в период смены летоисчисления. Поводов для его открытия было предостаточно. Для получения высоких температур в металлургии был уже известен способ дутья. При варке стекла, требующей также высоких температур, дутье, в частности, проводилось при помощи легких человека. Для

5

этого использовались длинные и полые тростниковые трубки, конец которых обмазывался глиной. Последнее было необходимо для того, чтобы трубка не загоралась. Таким образом, для открытия метода выдувания стеклянных изделий были созданы все предпосылки. Нужен был только случай, когда конец трубки прикоснется к жидкой стекольной массе. Если это произошло, то, продолжая дуть в трубку, человек должен получить что-то похожее на пузырь. Следующим шагом было помещение выдуваемого «пузыря» в деревянную форму, и полое стеклянное изделие почти готово.

Вероятно, метод выдувания изделий из стекла был изобретен в различных местах, где культивировалось стеклоделие, примерно в одно и то же время. Однако принято считать, что способ выдувания был изобретен в Александрии в I в. до н.э.

Первый стекольный завод в России был построен в 1636 г. близ г. Воскресенска под Москвой. На нем выдували оконное стекло и стеклянную посуду. Через 30 лет в селе Измайлово, также под Москвой, был построен завод, на котором изготовляли высококачественные стаканы, графины, фляги, рюмки, кувшины и др. Особенно быстро стеклоделие развилось при Петре I. В XVIII в. около Москвы действовало уже шесть стекольных заводов.

Физические свойства

Как и любой другой материал, стекло обладает рядом качеств, которые необходимо знать, прежде чем использовать его в той или иной области.

Плотность. Может варьироваться в зависимости от состава смеси и способа изготовления. Значение плотности стекла может колебаться от 220 до 650 кг/м3.

Хрупкость. Эта характеристика является отличительной особенностью стекла и ограничивает его применение в строительной области. В настоящее время учеными создаются более сложные сплавы, максимально увеличивающие прочность материала.

Термостойкость. Обычное стекло выдерживает температуру до 90 оС.

6

После обработки термические свойства материала значительно повышаются. Например, промышленное стекло способно выдерживать температуру более 200 оС.(2)

1.4 Состав стекла

Стандартный состав стекла представляет собой смесь чистого кварцевого песка, извести и соды. Для изменения свойств материала могут использоваться различные добавки. Но все-таки основным составляющим компонентом является именно чистый речной песок. Его количество составляет примерно 75% от всей смеси. Сода позволяет снизить температуру плавления песка почти в 2 раза. Известь защищает стекло от воздействия большинства химических веществ, а также добавляет прочности и блеска.

Дополнительные примеси:

Марганец (Mn) добавляют в стекло для получения специфического зеленого оттенка. Для получения других цветов может использоваться никель или хром.

Свинец (Pb) придает стеклу дополнительный блеск и характерный звон. Материал получается более холодным на ощупь. Стекло с примесью свинца называется хрусталь.

Оксид бора тоже придает материалу дополнительный блеск и прозрачность, при этом понижая коэффициент теплового расширения изделий.(3)

1.5 Основные виды стекла и их применение

Существует множество видов стекол, которые охватывают весь спектр применения их в народном хозяйстве.

Закаленное стекло, обладающее повышенной термостойкостью, получают путем нагрева стекла до температуры закалки (540-650˚ С) и последующего быстрого охлаждения. Термостойкость – до 175˚С. применяется в строительстве (двери, перегородки, ограждения), для остекления городского транспорта.

7

Термостойкое (борсиликатное) стекло содержит окись рубидия, окись лития и др. Термостойкие стекла имеют коэффициент линейного расширения в 2-3 раза меньше, чем обычное стекло. Изделия из таких стекол выдерживают перепады температур до 200˚С.

Их используют для изготовления термостойких деталей аппаратуры.

Теплозащитное стекло задерживает 70-75% инфракрасных лучей, оставаясь при этом прозрачным для видимого света.

Отражающее стекло используют для уменьшения нагрева солнечными лучами и регулирования освещенности. Эти свойства достигаются путем покрытия, наносимого на стекло в вакуумной камере и образующего с ним единое целое.

Триплекс – безопасное безосколочное стекло с повышенной тепло- и шумоизоляцией. Оно состоит из пакета, образованного из 2-х или более листов стекла, между которыми проложена прозрачная пластичная пленка, прочно соединенная со стеклом склеивающим составом.

Жидкое стекло – водный раствор силиката натрия Na2SiO3. Этим стеклом пропитываются ткани и дерево для придания им огнестойкости; оно применяется для изготовления кислотоупорного цемента, силикатных красок и глазурей, а также в качестве

конторского клея.

Есть еще много других видов стекол, таких как: оконное, фотохромное, витражное, хрустальное, кварцевое, пеностекло, стекловолокно, стеклопластики. (2)

2.Практическая часть

2.1 Изучение школьной коллекции «Стекло»

В школьной лаборатории есть учебная коллекция «Стекло», в которой представлены различные виды этого материала, некоторые из которых были охарактеризованы выше. В коллекции 12 разновидностей стекла. Оказывается, есть такие виды стекла, которые не обладают прозрачностью, пористые

8

(пеностекло), похожие на пластмассу (стеклопластики), в виде волокон (стекловолокно). Для меня оказалось интересным, что из стекловолокна можно изготавливать стеклоткани. (Приложение 1)

2.2 Растворение стекла.

Казалось бы, стекло – это нерастворимое в воде вещество. Ведь в стеклянные банки, бутылки можно не только наливать воду и различные растворы, но и хранить в них. Однако, и стекло можно растворить.

Для опыта мы использовали два вида стекла – оконное и пробирковое. Оба образца сломали и растерли в ступке до порошкообразного состояния. К растертому стеклу добавили воды и взболтали. Чтобы стекло быстрее растворилось, пробирки нагрели. Один из компонентов, используемых для получения стекла – сода, имеет щелочную реакцию среды. Для определения среды используют индикаторы – вещества, изменяющие цвет в растворах кислот и щелочей. Мы воспользовались фенолфталеином.

Результат. Раствор стал розовым. Это значит, что стекло растворилось, а сода, входящая в его состав дала щелочную реакцию. (Приложение 2)

2.3 Плавление стекла

Стеклянную трубку нагрели в пламени спиртовки.

Результат. Через некоторое время стекло размягчается. Мягкому стеклу можно придать различные формы. У меня получились изогнутые трубки. (Приложение 3)

Получение цветных стекол

Размягчили стеклянную трубку в пламени спиртовки и аккуратно растянули так,

чтобы получилась стеклянная нить. Растягивали до разрыва нити. Одну часть опустили в раствор хлорида кобальта розового цвета, другую в раствор сульфата меди. Затем снова внесли в пламя спиртовки.(6)

Результат. В пламени спиртовки нить сплавилась в шарик. В первом

9

случае шарик светло-голубого, во втором – светло-розового цвета. Чем длиннее получается нить, тем крупнее шарик. У меня получились шарики в диаметре примерно 1,5 мм. Интересно, что при использовании розового раствора, получается голубое стекло, а при использовании голубого раствора – розовое. (Приложение4)

Матирование стекла.

Стекло неактивное вещество, но может растворяться в плавиковой кислоте. В школьном химическом кабинете плавиковая кислота, как правило, отсутствует, однако ее можно получить в процессе нанесения рисунка.

Перед обработкой поверхность обезжиривают и сушат. Для работы готовят эмульсию, которая состоит из 1 г фтористого натрия, 1 г желатина и 200 мл горячей воды.

Стекло заклеили скотчем, с помощью скальпеля вырезали в скотче фигуру в виде звездочки. Стекло покрыли полученной эмульсией. После высыхания эмульсии на обрабатываемое стекло на 50-60 секунд наливают 5%-ный раствор соляной кислоты. Затем излишки реактива удаляют, а впитавшаяся в желатин кислота протравливает стекло. (7)

Результат. После промывания стекла в проточной воде и удаления скотча на стекле осталась звезда. (Приложение 5)

Выводы

— не смотря на свою «обычность» стекло обладает особенными свойствами;

— изучив свойства стекла и приложив некоторые старания, можно в школьной лаборатории изменить обычное стекло, поменяв форму, цвет и нанести рисунок

Заключение

Стекло, по праву, считается одним из самых удивительных материалов. Человек уже много веков назад научился изготавливать из него не только посуду, но и ювелирные украшения, правда в настоящее время все больше

10

используются пластики. Прошло много веков, но и в настоящее время стекло популярно в различных сферах деятельности человека: медицине, технике, науке, культуре, быту.

Моя гипотеза подтвердилась, цель работы достигнута. Я доказал, что стекло – это вещество с удивительными свойствам. Каждый из нас использует стекло с раннего детства, смотря на мир через окно, выпивая воду из стакана, украшая себя стеклянными бусами. И, наверное, по этой причине мы не замечаем необычного в обычных вещах.

11

Литература.

Кукушкин Ю. Н. Химия вокруг нас: Справочное пособие. – М.: Высшая школа, 2010.

Лисичкин Г. В., Бетанели В. И. Химики изобретают. – М.: Просвещение, 2012.

Стенин Б.Д. Занимательные задания и эффектные опыты по химии. – М. Дрофа, 2002.

Химия для гуманитариев. Сост. Н. В. Ширшина. – Волгоград: Учитель, 2010

Интернет-ресурсы:

http://chem21.info/info/682090/

http://www.mywebs.su/blog/riddles/23629.html

http://mash-xxl.info/article/242071/

12

Приложения

Коллекция «Стекло»

2.Растворение стекла

3.Плавление стекла

13

Получение цветных стекол

Матирование стекол

14

Просмотров работы: 258

Оргстекло: виды, применение, свойства и характеристики

Органическое стекло или полиметилметакрилат – виниловый полимер, полученный синтезом метилметакрилата, представляет собой прозрачный термопластичный материал. Оргстекло имеет множество названий, наиболее популярные – акрил, поликарбонат, плексиглас и другие.

Материал был изобретен в начале XX века Отто Ромом, что стало настоящим переворотом в химии. Благодаря этому открытию появились не только новые технологии, но и новые сферы производства. Сегодня материал используется очень широко в машиностроении, строительстве и медицине. Он стал незаменимым в архитектуре и дизайне, трудно представить себе производство мебели, часов, приборов без использования оргстекла.

Содержание:

  1. Технические характеристики органического стекла
  2. Отличительные особенности оргстекла
  3. Виды органического стекла
  4. Сфера применения оргстекла

Технические характеристики органического стекла

Органическое стекло – это экологичный и безопасный материал. Он приблизительно вдвое легче обычного стекла.

Оргстеклу можно придавать самые разные формы, не нарушая при этом оптические свойства материала. Органическое стекло имеет следующие технические характеристики:

  • коэффициент пропускания света – до 93% прозрачное и до 75% матовое стекло;
  • плотность – 1,19 г/см3;
  • уровень водопоглощения – 0,2%;
  • плотность при растяжении – 75 МПа;
  • уровень теплоустойчивости – 110 Сº;
  • модуль упругости – 3 210 МПа;
  • температура эксплуатации – от – 40 до + 90 Сº;
  • температура воспламенения – 460 – 635 Сº.

Оргстекло – материал, который легко поддается обработке – распилу, фрезеровке, шлифовке. В сочетании с высокой термопластичностью это открывает широкие возможности для его использования. Материал не только обладает превосходными свойствами, но и долго сохраняет их в процессе эксплуатации, поэтому он и получил такое широкое распространение.

Отличительные особенности оргстекла

Оргстекло обладает рядом достоинств, которые с успехом используются в самых разных областях производства. Основными из них являются:

  • прочность – в отличие от обычного стекла акрил очень трудно разбить, поэтому многие в прошлом стеклянные вещи теперь производят из оргстекла;
  • легкая обработка – это свойство широко применяется в дизайне, из оргстекла можно создавать самые невероятные формы, что и с успехом используется в производстве мебели и предметов интерьера;
  • небольшой вес облегчает транспортировку и монтаж изделий из акрила, это свойство используется при создании рекламных конструкций, сантехники, мебели;
  • высокая степень прозрачности в сочетании с разными цветами дает оригинальный эффект, который также используют дизайнеры;
  • влагоустойчивость и стойкость ко многим химическим веществам позволяют использовать материал для производства кухонной мебели.

Органическое стекло помимо достоинств имеет и ряд недостатков. Прежде всего, это слабая устойчивость к механическим повреждениям и горючесть.

Кроме того, оно требует специального ухода, например, для обработки нельзя использовать спирт и ацетон. Но несмотря на некоторые «неудобства», органическое стекло прочно вошло в нашу жизнь и захватывает все новые и новые области.

Виды органического стекла

В настоящее время производители выпускают несколько видов оргстекла с различными характеристиками:

  • прозрачное стекло с пропусканием света 93%, гладкое и блестящее с обеих сторон, толщиной 3 мм;
  • прозрачное цветное органическое стекло, равномерно окрашенное в какой-либо цвет, чаще других встречаются серые и голубые оттенки;
  • прозрачное рифленое стекло отличается объемным рисунком с одной стороны листа, другая поверхность остается гладкой, может быть цветным или бесцветным;
  • белое матовое органическое стекло с гладкой с двух сторон поверхностью, процент светопропускания колеблется в диапазоне от 20 до 70;
  • цветное матовое оргстекло представляет собой листы различных цветов и разной степени светопропускания с глянцевой поверхностью;
  • рифленое матовое стекло имеет с одной стороны объемный рисунок с другой гладкую поверхность, выпускается в широкой цветовой палитре.

От вида оргстекла зависит и сфера его применения. Так, прозрачные стекла используются в строительстве, машиностроении, медицине, а матовые рифленые цветные стекла используются для дизайна мебели и предметов интерьера.

Сфера применения оргстекла

Машиностроение. Органическое стекло применяется в авиа- и автомобилестроении, используется во многих приборах и станках. Также его используют при строительстве малых и больших судов для остекления и создания внутренних перегородок.

Строительство и архитектура. Пластиковые стекла широко применяются в строительстве и архитектуре. Из них изготавливают заборы, навесы, перегородки, различные элементы конструкции как снаружи, так и внутри зданий и сооружений.

Мебель и предметы интерьера. Благодаря отличным потребительским свойствам, материал так полюбился дизайнерам. Его используют при производстве мебели, светильников, аквариумов, из него получаются очень красивые витражи. Пользуется большой популярностью и сантехника из оргстекла.

Реклама. Органическое стекло используется для изготовления торгового и выставочного оборудования, наружных рекламных конструкций, офисных табличек и указателей. Кроме того, его применяют для производства сувенирной продукции, стендов, номерков и бирок.

Медицина. В медицине из органического стекла производят контактные линзы и защитные очки. Материал применяется при изготовлении оптоволокна, которое используется в медицинских инструментах для проведения эндоскопических операций.

Органическое стекло прочно вошло в нашу жизнь. Его буквально можно встретить на каждом шагу – дома, в офисе, в магазине, на улице. Сфера применения этого материала очень широка, и, по всей вероятности, в ближайшей перспективе он не сдаст свои позиции, наоборот, появятся новые изделия из оргстекла и оригинальные варианты его применения.

Похожие записи:

Оргстекло. Виды и производство.Свойства и применение.Особенности

Оргстекло (органическое стекло) – виниловый полимер в виде термопластического материала, также известный как акрил, плексиглас и поликарбонат. Может быть прозрачным или иметь любую расцветку. В отличие от классического твердого стекла оно обладает упругостью, поэтому не разбивается на острые осколки при ударе. Органическое стекло применяется при изготовлении прозрачных комплектующих для автотранспорта, спецтехники, защитных экранов станков. Его используют при сборке мебели, наручных и настенных часов, оптики.

Свойства и характеристики органического стекла

Одним из главных достоинств материала является возможность придания ему практически любой формы без нарушения его оптических качеств. На линии изгиба исключается помутнение или существенное искажение обзора.

Материал обладает следующими техническими параметрами:
  • Плотность до 1,2 г/см³.
  • Коэффициент прозрачности до 93%.
  • Средний уровень теплоустойчивости 150°С.
  • Рекомендуемая температура эксплуатации от — 40 до + 90°C.

При прямом воздействии высокой температуры свыше +150-190°С оргстекло становится мягким, поэтому теряет заданную форму. При этом в зависимости от химического состава его температура воспламенения составляет минимум +460°С. Ограниченный температурный диапазон применения существенно сужает возможность использования стекла. Оно категорически не подходит для оснащения обзорной дверцы духовых шкафов, котлов и т.д.

Весьма положительным качествам органического стекла является простота его обработки. Его раскрой может осуществляться путем механического реза абразивным инструментом или прожигом раскаленной металлической струной. При этом классический раскрой путем слома по царапине после стеклореза не применяется. Оргстекло не только хорошо режется, но и поддается сверлению и сравнительно простой шлифовке. При необходимости придания сложной формы оно подогревается, после чего становится пластичным.

Материал не является хрупким. Изделия из него не разбиваются на осколки. При этом сильное механическое воздействие все же может сломать поверхность. Изделия из органического стекла достаточно легкие. Именно поэтому их используют для создания рекламной продукции, витрин для мебели, сантехники. Технология производства материала исключает присутствие в его полости пузырьков воздуха. Благодаря этому любое изделие имеет идеальную однородную прозрачность. Материал производится как в прозрачном, так и матовом исполнении.

Изделия из оргстекла имеют нейтральную химическую реакцию к большинству бытовой химии. Это не только достоинство, но в определенных случаях и недостаток. В частности существуют сложности с его приклеиванием. К материалу практически не прилипает классический суперклей, холодная сварка, термоклей. Большинство разновидностей оргстекла не рекомендовано протирать спиртом или ацетоном, поскольку данные вещества могут повлечь помутнение. Однако короткое воздействие даже 10% этилового спирта с органическим стеклом не вызывает потемнение последнего. В связи с этим абсолютно все моющие вещества для окон не опасны для оргстекла.

Популярность материала частично продиктована высокой степенью безопасности его использования. Оно не разбивается на осколки, не имеет острых режущих краев.

Важным качеством оргстекла выступает его достаточно высокий уровень температурного решения. Это нужно учитывать при его монтаже. При чрезмерно плотной установке во время изменения температуры материал способен расшириться искривиться по плоскости.

В открытом огне оргстекло возгорает. При этом оно не выделяет токсичные и прочие отравляющие вещества. Это качество делает его менее пожаробезопасным, чем силикатное стекло. С другой стороны нагреваясь, оно не растрескивается и не разлетается на осколки.

Технология производства

Оргстекло производится путем экструзии или литья. Его свойства меняются в зависимости от того как оно было сделано. Стекло разделяют на литое и экструзионное.

Технология изготовления экструзионного материала подразумевает выдавливание расплавленной массы под давлением. В результате она уплотняется и застывает. Для изготовления литого стекла масса заливается в форму. В качестве ее верхнего и нижнего заграждения служат 2 листа силикатного стекла. После затвердевания массы форма разбирается и образованный лист извлекается.

Применяемая технология производства напрямую влияет на качество получаемой продукции. К примеру, изделия сделанные путем пропускания через экструдер имеют разбежность всего до 5% по заданной толщине. В то же время, литое оргстекло может быть тоньше или толще на 30%. Материал, полученный путем экструзии, лучше склеивается. Уровень его усадки при нагреве доходит до 6%. Литое органическое стекло обладает большей химической устойчивостью и ударопрочностью. Температура его плавления как минимум на 20°С выше. Уровень усадки литого материала доходит до 2%.

Виды стекла по прозрачности и цвету
Производители выпускают несколько разновидностей оргстекла, которые отличаются между собой по различным характеристикам:
  • Прозрачность.
  • Тип поверхности.
  • Цвет.

Стекла разделяются на прозрачные и матовые. Пропускная способность прозрачного оргстекла составляет до 93%. Оно гладкое и блестящее с обеих сторон. Его толщина за редким исключением не превышает 5 мм. Матовые стекла имеют уровень светопропускания от 20 до 70%. При этом матовость достигается снижением прозрачности внутри полости стекла, поэтому материал гладкий с обеих сторон. Это исключает вероятность соскребания матирующего слоя при очистке, как в некоторых разновидностях обычного стекла.

Также стекло бывает гладким и рифленым. Образцы с рифленой поверхностью с одной стороны гладкие, а с другой имеют характерные волнообразные или геометрические выступы. В большинстве случаев рифленые стекла матовые. Наличие рельефа искажает оптические качества материала, уменьшает его прозрачность.

Органическое стекло производится практически в любых расцветках. Оно может быть как прозрачным, так и желтым, зеленым, синим, голубым и т.д.

Где применяется оргстекло

Низкая температурная устойчивость материала, а также значительно меньшая механическая прочность, чем у силикатного стекла, создают определенные ограничения на его использования. В связи с этим наиболее часто его применяют в сферах:

  • Машиностроения.
  • Архитектуры.
  • Производства мебели.
  • Рекламе.
  • Медицине.

Материал используется в авиастроении и автомобилестроении. Также изделия данного класса применяют для создания защитных экранов на станках. Из оргстекла сделаны приборные панели автомобилей. Именно им закрываются фары и прочая оптическая техника. Положительным качеством использования оргстекла выступает возможность его реставрации. При появлении царапин их можно отшлифовать и в дальнейшем отполировать до восстановления полной прозрачности. Реставрировать оргстекло в разы проще и быстрее, чем твердое стекло.

Из оргстекла делают заборы, навесы, интерьерные и офисные перегородки. Благодаря сравнительно небольшой массе, доставка таких элементов не требует использования дорогой упаковки. Также материал используется для изготовления мебели. Им закрывают светильники, из него делают цветные витражи, Вся прозрачная сантехника выливается из органического стекла.

Все выставочное оборудование, наружная и внутренняя реклама закрывается оргстеклом. Это продиктовано требованиями безопасности и долговечностью материала. Он не разбивается на режущие осколки. Все офисные таблички, указатели, стенды тоже прикрываются органическим стеклом.

Оргстекло получило широкое распространение в медицине, в частности для изготовления контактных линз. Также из него делают линзы для очков, но они считаются дешевой альтернативой обычному твердому стеклу.

Склейка оргстекла

Процесс склеивания элементов из органического стекла сопровождается рядом трудностей. Дело в том, что материал может иметь различный химический состав. Под тем, что обычно подразумевается под оргстеклом, может приниматься акрил, полипропилен, полистирол или поликарбонат. Это разные по химическому составу материалы, поэтому для одних определенный тип клея подходит, а для других является бесполезным.

Для склейки оргстекла могут применяться:
  • Специализированные реакционные клеи.
  • Растворители.
  • Контактные клеи.

Реакционный клей является самым удобным при работе. Он позволяет создать прозрачный шов, эффективно скрепляющий элементы между собой. Уровень токсичности клея самый низкий в сравнении с растворителями или контактными составами.

Более дешевым решением является использования растворителей. Применение таких материалов позволяют получать качественное склеивание, но процесс затвердевания соединения происходит дольше. В небольшое количество растворителя добавляется стружка оргстекла, с которым приходится работать. В результате она растворяется, что позволяет получить клейкую массу. Раствор применяется для скрепления. Также можно просто наносить растворитель на детали, которые нужно соединить. Они сжимаются между собой, растворяются по краям и свариваются в монолитную конструкцию.

Самое слабое соединение дает контактный клей. Это могут быть «супер клеи», эпоксидная смола. Использование таких компонентов дает очень слабый результат. Детали распадаются даже при слабом механическом давлении.

Похожие темы:

Стекло неорганическое — Мегаэнциклопедия Кирилла и Мефодия — статья

В стеклообразное состояние можно перевести вещества различной природы. Это и расплавы ряда чистых оксидов и их смесей в бесчисленных вариантах, и солеобразные расплавы — галогенидные, нитратные и др. В стеклообразном состоянии легко могут быть получены и многие органические вещества. Стекла легко образуются водными растворами многих солей и их смесей. В последнее десятилетие стали известны металлические стекла, полученные особо быстрым охлаждением сплавов разных металлов. Таким образом, в стеклообразном состоянии могут находиться вещества самого разного химического типа, с самыми разными видами химических связей — ковалентных, ионных, металлических и разнообразными физико-химическими свойствами.Впервые человечество познакомилось с природным стеклообразным веществом — обсидианом — в доисторические времена. Как искусственный материал стекло впервые открыто в Египте ок. 4000 до н. э. На протяжении тысячелетий люди, используя различные добавки, добились большого разнообразия классов и разновидностей стекол. До XIX в. стекло применялось главным образом в изготовлении предметов утилитарного назначения и художественного стекла. В России становление науки о стекле и промышленного стеклоделия связано с именами М. В. Ломоносова и Д. И. Менделеева. Ломоносов первым в мировой практике стеклоделия обратил серьезное внимание на взаимосвязь свойств стекол и их химического состава. Заслугой Менделеева являются предвидение полимерного строения SiO2 и развиваемые им представления о химической природе стекла, которое он рассматривал в общем контексте разработки таких фундаментальных понятий химической науки, как определенное-неопределенное соединение, раствор, сплав и т.д.

Рентгенограммы кварцевого стекла лучше всего интерпретируются в рамках модели непрерывной беспорядочной сетки тетраэдров SiO4 (атом кремния, окружен четырьмя атомами кислорода), и отражают ближний порядок в структуре стекла. Рентгеновские и нейтронографические исследования показали, что наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол. В бездефектном кварцевом стекле существуют только мостиковые атомы кислорода. Для стекол, содержащих два или более компонентов, характерна химическая неоднородность. При введении в SiO2 оксида натрия в результате взаимодействия оксидов, несмотря на сохранение координации атомов кремния относительно кислорода, непрерывность кремнекислородной сетки нарушается за счет частичных обрывов связей Si-O-Si, соединяющих тетраэдры между собой.

По химическому составу неорганические стекла подразделяют на элементарные, халькогенидные и оксидные. Основу оксидного стекла составляет стеклообразующий оксид. К числу стеклообразующих оксидов относятся SiO2, В2O3, GeO2, P2O5. Наибольшее распространение получили силикатные стекла (на основе SiO2) благодаря высокой химической устойчивости, а также дешевизне и доступности сырьевых компонентов. Для придания определенных физических свойств в состав силикатных стекол вводят оксиды различных металлов (наиболее часто щелочных и щелочноземельных).

Физико-химические свойства стекла зависят от его состава и степени обработки. Наименьшую плотность (~2, 3 г/см3) имеет кварцевое стекло, состоящее только из оксида кремния. Наиболее тяжелые свинцовые стекла, содержащие много оксида свинца (до 80%), имеют плотность около 8 г/см3.

Предел прочности стекла при растяжении невелик (8.107Н/м2) и увеличивается при повышении содержания в нем SiO2 и CaO. Щелочные оксиды снижают прочность стекла. Сжатию стекло противостоит гораздо лучше, чем растяжению, и предел прочности при сжатии и растяжении может различаться на порядок.

Стекло очень хрупкий материал; наименьшей хрупкостью обладают боросвинцовые стекла. Кварцевое стекло остается хрупким при нагреве до температуры ~ 400°С, при дальнейшем нагреве стекло постепенно размягчается и становится вязкой жидкостью. Процесс перехода стекла из твердого состояния в жидкое не характеризуется сколько-нибудь определенной температурой плавления. При правильном охлаждении жидкого стекла этот процесс происходит в обратном направлении также без кристаллизации (деаморфизации).

Сырьем для изготовления стекла служат кварцевый песок SiO2, сода Na2CO3, поташ K2CO3, известняк CaCO3, доломит CaCO3.MgCO3, сульфат натрия Na2SO4, бура Na2B4O7, борная кислота H3BO3, сурик Pb3O4, полевой шпат Al2O3.6SiO2.K2O и др. Сырьевые материалы измельчают, отвешивают в нужных соотношениях и тщательно перемешивают. Шихта, как правило, содержит стеклянные осколки, остающиеся от предыдущей варки, и, в зависимости от целей дальнейшего использования стекла, окислители, красители, обесцвечиватели, осветлители, глушители, восстановители и окислители, ускорители варки или иные добавки. Красители придают стеклу нужный цвет. Для этого во время плавки в стеклянную массу добавляют окислы металлов. Например, железо сделает прозрачный материал голубовато-зеленым или желтым, марганец — желтым или коричневым, хром — травянисто-зеленым, уран — желтовато-зеленым (так называемое урановое стекло), кобальт — синим (кобальтовое стекло), коллоидное серебро — желтым, медь — красным. Полученную таким образом шихту загружают в стекловарочную печь. После этого шихту расплавляют при высокой температуре. Стекло варится путем выдерживания смеси сырьевых материалов при температурах от 1200 до 1600°С в течение продолжительного времени — от 12 до 96 ч. При нагреве шихта плавится, летучие составные части (H2O, CO2, SO3) из нее удаляются, а оставшиеся химически реагируют между собой, в результате чего образуется однородная стекломасса, которая идет на выработку листового стекла или стеклянных изделий. Стеклообразное состояние материала получается лишь при быстром охлаждении стекломассы. В случае медленного охлаждения начинается частичная кристаллизация, стекло теряет прозрачность из-за нарушения однородности, а отформованные изделия при этом обладают невысокой механической прочностью.

В процессе охлаждения расплава сильно изменяется вязкость стекломассы. Для любого стекла на графике температурной зависимости вязкости различают две характерные точки, соответствующие температурам текучести Тт и стеклования Тс. При температурах выше Тт у стекла проявляются свойства текучести, типичные для жидкого состояния. Вязкость различных стекол при температуре Тт примерно одинакова и равна 108 Па.с. Температуре стеклования Тс, ниже которой проявляется хрупкость стекла, соответствует вязкость порядка 1012 Па.с. Интервал температур между Тт и Тс называют интервалом размягчения, в котором стекло обладает пластичными свойствами. Для большинства применяемых в технике силикатных стекол Тс=400-600оС, а Тт=700-900оС, т. е. интервал размягчения составляет несколько сотен градусов. Чем шире интервал размягчения, тем технологичнее стекло, так как в этом случае легче отформовать изделия. Изготовленные стеклянные изделия подвергают отжигу с целью устранения возникшего при неравномерном остывании напряжения.

Если в древности варка стекла осуществлялась в глиняных горшочках глубиной и диаметром 5–7 см, то в настоящее время для производства оптического, художественного и других видов стекла специального состава применяют шамотные горшки больших размеров, вмещающие от 200 до 1400 кг шихты. В одной печи могут выдерживаться от 6 до 20 горшков, горшковые печи применяют для получения относительно небольшого количества стекла с точно выдержанным составом. В крупном производстве применяют ванные печи. Большие массы стекла варятся в ванных печах непрерывного действия. Такой режим обеспечивает протекание необходимых химических реакций, в результате чего сырьевая смесь приобретает свойства стекла. Постоянный уровень расплавленного стекла в ванне поддерживается путем непрерывной подачи шихты на одном из концов установки и извлечения готового продукта с той же скоростью из другого конца. В таком режиме некоторые стекловаренные печи работают до пяти лет. Крупные печи, иногда вмещающие несколько сот тонн расплавленного стекла, приспосабливают к интенсивному механическому производству. Как горшковые, так и ванные печи обычно нагревают сжиганием природного газа или мазута.

Силикатные стекла по составу, а в связи с этим и по электрическим, оптическим, механическим свойствам можно разделить на:

  • бесщелочные стекла (отсутствуют окислы натрия и калия). В эту группу входит чистое кварцевое стекло. Стекла данной группы обладают высокой устойчивостью к нагреву, высокими электрическими свойствами, но из них трудно изготавливать изделия, особенно сложной конфигурации;
  • щелочные стекла без тяжелых окислов или с незначительным их содержанием. Эта группа состоит из двух подгрупп: натриевые и калиевые или калиево-натриевые. В эту группу входит большинство обычных стекол. Они отличаются пониженной устойчивостью к нагреву, легко обрабатываются при нагреве, но имеют пониженные электрические свойства: снижается удельное сопротивление, возрастают диэлектрические потери;
  • щелочные стекла с высоким содержанием тяжелых оксидов (например, силикатно-свинцовые или бариевые).

Был открыт целый ряд необычных применений стекла в связи с тем, что ему можно придать свойство поверхностной проводимости. Это достигается напылением на поверхность стеклянного изделия тонкого, прозрачного, почти невидимого слоя оксида металла. Электропроводящая пленка (толщиной 0, 5 мкм), например, может быть получена напылением солей металлического серебра и нагревом стекла до температуры 500-700 °С. Такое покрытие весьма долговечно и имеет поверхностное сопротивление в пределах от 10 до 100 Ом/см2. После покрытия пленки тонким слоем люминофора стекло можно использовать в качестве светящегося элемента (с голубым, зеленым, желтым свечением). При обычных температурах можно использовать известковое стекло, а при высоких — боросиликатное. Изготовленные из такого стекла панели лучистого нагрева могут работать при температурах до 350° С. Подобные панели — хороший источник энергии длинноволнового инфракрасного излучения, которое большинство веществ и сред поглощает с эффективностью 90% и более. Таким способом изготавливаются настольные стеклянные излучатели и вспомогательные нагреватели для помещений. Проводящие покрытия, нанесенные на ветровые стекла самолетов, сохраняют их теплыми и свободными от льда. Кроме того, в качестве источника тепла используют стеклопакеты с внутренним слоем из электропроводящего стекла.

Стеклянные колбы широко используются в качестве оболочек для ламп накаливания и электронно-лучевых трубок. Проволочные резисторы, трансформаторы, конденсаторы, реле и переключатели могут заключаться в оболочки из отпущенного стекла с выводами через стеклянные изоляторы. Крупные проходные изоляторы массой до 22 кг, рассчитанные на сильные токи и высокие напряжения, изготавливаются путем центробежной отливки стекла вокруг металлических втулок. С применением стекла изготавливаются конденсаторы как постоянной, так и переменной емкости. В конденсаторах постоянной емкости используется листовое стекло толщиной до 0, 025 мм. Конденсатор переменной емкости состоит из изготовленной с жестким допуском стеклянной трубки, часть внешней поверхности которой металлизируется для образования одной обкладки. Внутрь трубки вставляется стержень из латуни или инвара, образующий вторую обкладку. Стеклянные трубки или стержни с нанесенной на них углеродной, металлической или металлооксидной пленкой используются в качестве резисторов.

Стекло, устойчивое к радиоактивному излучению, получают из шихты специального состава. Для поглощения рентгеновских лучей используют оптические стекла с высоким содержанием свинца и бора. Чтобы улучшить устойчивость стекла к излучению, в шихту добавляют 0, 25-1, 5% окиси церия. Защитные свойства стекла можно приближенно оценивать по их плотности. Например, тяжелое свинцовое стекло с объемной массой 6200 кг/м3, содержащее 80% окиси свинца, по своей защитной способности в отношении излучения эквивалентно стали. Стекла, поглощающие медленные нейтроны, должны содержать один из следующих окислов: окись бора, окись лития, окись кадмия и др. Стекло, устойчивое к действию радиоактивных излучений, применяют при сооружении атомных электростанций (например, при устройстве защитных смотровых окон) и предприятий по изготовлению изотопов.

В 1947 было обнаружено, что стекла некоторых составов при воздействии ультрафиолетового излучения образуют скрытое изображение, которое может быть проявлено путем нагрева стекла чуть выше температуры отжига. Например, на стекло можно наложить фотографический негатив и облучить его ультрафиолетом, а потом нагреть стекло; в результате в объеме стекла появится воспроизведенное в цвете изображение. Цвет изображения зависит от вида светочувствительного металла, введенного в шихту. Один из составов дает опаловое стекло такой природы, что разбавленная фтористоводородная кислота протравливает облученную часть раз в пятнадцать быстрее, чем необлученную. Эта огромная разница в растворимостях позволяет осуществлять химическое травление. Таким способом в стекле можно вытравливать отверстия размером меньше половины среднего диаметра человеческого волоса в количестве до 100 тыс. отверстий на 1 см2. Стекла этого типа используются для изготовления световых табло и элементов светового декора, а также в качестве чувствительных элементов дозиметров. После воздействия проникающего излучения некоторые из таких стекол ярко светятся при облучении ультрафиолетовым светом, а другие меняют свой цвет. Интенсивность флуоресценции или степень изменения окраски пропорциональна полученной дозе облучения.

Варьирование химического состава стекол, режимов отжига и последующей обработки разными растворителями позволило получать стекла с размером пор от нескольких десятков до 1000 ангстрем. Пористые стекла широко применяются как адсорбенты и как «молекулярные сита», которые пропускают мелкие молекулы и не пропускают более крупные. Молекулярные сита были использованы, например, при получении противогриппозных вакцин. При введении в поры каких-либо неорганических соединений и последующей термообработке при 1000 – 1200оС получаются разнообразнейшие материалы, называемые импрегнированными кварцоидами. Они представляют собой массивное, во многих случаях совершенно прозрачное стекло, в котором уже нет пор. Это стекло обладает особыми свойствами, определяемыми составом введенных в поры веществ.

Значительную долю в производстве оптического стекла составляет оптическое стекло со специальными свойствами:

  • лазерное стекло на силикатной и фосфатной основе с различными концентрациями активатора, позволяющее создавать твердотельные квантовые генераторы, которые используются в научных исследованиях, медицине, специальных дальномерах и прицелах;
  • бескислородные или халькогенидные стекла для инфракрасной области спектра, применяются в оптических и полупроводниковых системах. Созданы особо чистые высокооднородные стекла, которые применяются в рентгеновских установках для защиты от излучения, используются в создании оптических систем для микролитографии, и позволяют получить микросхемы с разрешающей способностью менее микрона и обеспечить цветопередачу ТВ-систем;
  • на основе стекловолокна изготавливают волоконно-оптические элементы для передачи света и изображения. Применяются в космических аппаратах, военной технике, цветном телевидении, медицине, приборах ночного видения.

Фотохромными называются стекла, изменяющие окраску под действием излучения. В настоящее время получили распространение очки со стеклами-«хамелеонами», которые при освещении темнеют, а в отсутствие интенсивного освещения вновь становятся бесцветными. Такие стекла применяют для защиты от солнца сильно остекленных зданий и для поддержания постоянной освещенности помещений, а также на транспорте. Фотохромные стекла содержат оксид бора B2O3, а светочувствительным компонентом является хлорид серебра AgCl в присутствии оксида меди Cu2O. При освещении в результате химической реакции выделяется атомарное серебро, что приводит к потемнению стекла. В темноте реакция протекает в обратном направлении. Оксид меди играет роль своеобразного катализатора. При интенсивном облучении стекла (в том числе и лабораторного) г-лучами нейтронами и в меньшей мере б-, и в-лучами также происходит окрашивание стекла (чаще в темные и черные цвета). Это связано с изменением структуры стекла и образованием ионов, которые играют роль «цветовых центров». При нагревании стекла до температур, близких к температуре размягчения, окраска исчезает. Иногда подобные стекла используют в качестве дозиметров больших доз излучений.

Считаются весьма интересной и перспективной в практическом отношении группой веществ, сочетающих в себе свойства стекол и кристаллических тел полупроводников. Известны они очень давно. Например, одно из первых упоминаний о такого рода стеклах относится еще к 19 в. (стекло состава As2S3). Однако как определенный класс стекол они стали изучаться лишь в 1970-х гг., когда было установлено, что сплавы халькогенидов — сурьмы, мышьяка и таллия — образуют обширную область стеклообразного состояния. Халькогенидные стекла могут быть получены на основе самых различных сочетаний. В совокупности они представляют весьма обширную группу стекол, обладающих весьма разнообразными физико-химическими, физическими, электрическими и оптическими свойствами. Электропроводность халькогенидных стекол в зависимости от состава может находиться в границах 10-14-10-1ом-1·см-1, т. е. быть выше электропроводности многих известных кристаллических проводников. Изучение электрических свойств этой группы веществ показало, что по ряду признаков (температурная проводимость, большое значение термоэлектродвижущей силы, и особенно внутренний фотоэлектрический эффект) они являются типичными электронными полупроводниками с дырочным механизмом проводимости. Соединения такого типа в последние годы стали применять в переключающих устройствах, нелинейной оптике и в качестве стеклообразующих полупроводников.

На основе стекол также получают: стеклокерамический материал — ситалл, ячеистый материал пеностекло, триплекс, и ряд других материалов.
  • Неорганические стекла, покрытия и материалы. — Рига: РПИ, 1989.
  • Фельц А. Аморфные и стеклообразные неорганические твердые тела. — М.: Мир, 1986.
Записи созданы 4192

Отправить ответ

avatar
  Подписаться  
Уведомление о

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх