Динистор как проверить мультиметром – Как проверить динистор 🚩 Сварочный инвертор своими руками 🚩 Естественные науки

РЕМОНТ КОМПАКТНОЙ ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ КЛЛ

РЕМОНТ КОМПАКТНОЙ ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ КЛЛ

     1. Технология проверки, ремонта и замены деталей в компактных люминисцентных лампах. Прежде всего проверяем нити накала лампы. Если нить перегорела то её можно зашунтировать резистором 10 Ом. Правда при этом запуск лампы может происходить с небольшим мерцанием несколько секунд. В принципе, если нить у ЛДС перегорела, то восстанавливать ее и питать от ЭПРА считаю нецелесообразно, так как такой лампы хватит ненадолго и скоро она снова сгорит. Лучше эту ЛДС запитать от преобразователя на блокинг-генераторе.

разобранная люминисцентная лампа КЛЛ


     2. Если в схеме лампы имеется ограничительный резистор — его обычно ставят для снижения броска напряжения при включении КЛЛ или в качестве предохранителя. Сопротивление данного резистора примерно несколько Ом. Такие резисторы ставятся только в качественных ЭПРА в китайских они отсутствуют.

     3. Проверяем диодный мост и фильтрующий конденсатор (4,7мф х 400В). В китайских ЭПРА этот конденсатор является более частой неисправностью, конденсатор выходит из строя даже чаще чем транзисторы. Поэтому если есть возможность — просто меняем всегда. По поводу диодного моста, тут все просто, позваниваем все диоды и при пробое заменяем на заведомо исправные. Чаще всего в схемах применяют диоды 1N4007. 

Диоды и конденсатор иногда подходят от зарядников сотового телефона.

     4. Часто неисправностью ЭПРА является выход из строя транзисторов генератора. Перед проверкой транзисторов их необходимо выпаять, в связи с тем, что в цепи транзисторов между переходами могут быть включены диоды что может привести к ложным показателям мультиметра при проверке транзисторов на их целостность. В качестве транзисторов используются транзисторы различных производителей серии 13003 и 13001. Правильный выбор транзисторов определяет надежность и срок службы генератора. Так например для энергосберегающих ламп мощности 1-9Вт рекомендуется использовать транзисторы серии 13001 ТО-92, для 11Вт– серии 13002 ТО-92, для 15-20Вт – серии 13003 ТО-126, для 25-40Вт – серии 13005 ТО-220, для 40-65Вт – серии 13007 ТО-200, для 85ВТ – серии 13009 ТО-220.

транзисторы и динистор


     Так же обязательно проверить обвязку из резисторов вокруг транзисторов. Чаще всего выходит из строя резистор в цепи базы транзисторов (примерно 22 ома).

     5 Если ЛДС мерцает, вероятная неисправность — это выход из строя высоковольтного конденсатора, включенного между нитями накала лампы из-за воздействия повышенного напряжения. Конденсатор можно заменить на более высоковольтный с номиналом 3,3 нФ на 2 кВ.

     6 Проверка динистора. В принципе проверить динистор на целостность с помощью мультиметра нереально. Но все же. Итак, выпаиваем динистор. Проверяем его мультиметром — он не должен проводить ни в одном направлении.

Динистор DB3, его отечественный, более громоздкий аналог — КН102. Данный полупроводниковый прибор открывается при достижении на нём напряжения в 30 Вольт.

     Технические параметры динистора DB3 DO-35:
Напряжение в открытом состоянии (Iоткр — 0.2А), В — 5
Максимально допустимый средний ток в открытом состоянии, А — 0.3
Импульсный ток в открытом состоянии, А — 2
Максимальное напряжение в закрытом состоянии, В — 32
Постоянный ток в закрытом состоянии, мкА — 10
Максимальное импульсное неотпирающее напряжение,В 5

     Принципиальных различий между динистором и тринистором нет, однако если включение динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение включения может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода.

     Итак идем дальше при выходе из строя динистора вероятен выход из строя конденсатора (на 99%) припаянного к одному из выводов динистора. По неисправности этого конденсатора можно судить о выходе из строя динистора. С другой стороны, вероятна ситуация, что при выходе из строя динистора схема сгорит почти вся и просто будет невыгодно ремонтировать её. Четверть бракованных энергосберегающих ламп связано с динисторами. Не стартуют или через раз стартуют лампочки. Динистор превращается в обычный 30-ти вольтовый стабилитрон. Зачастую, после прогрева паяльником на некоторое время восстанавливается работа. В некоторых случаях неонка-стартер, используемая в U-образной настольной дневной лампе, установленная вместо сгоревшего динистора, может помочь запустить лампу. Поэтому если нет под рукой DB3, можно попробовать заменить динистор неонкой. Материал предоставил: А. Кулибин.

     ФОРУМ по ремонту.

   Ремонт электроники

Динистор. Принцип работы и свойства.

Принцип работы и свойства динистора

Среди огромного количества всевозможных полупроводниковых приборов существует динистор.

В радиоэлектронной аппаратуре динистор встречается довольно редко, ходя его можно встретить на печатных платах широко распространённых энергосберегающих ламп, предназначенных для установки в цоколь обычной лампы. В них он используется в цепи запуска. В маломощных лампах его может и не быть.

Также динистор можно обнаружить в электронных пускорегулирующих аппаратах, предназначенных для ламп дневного света.

Динистор относится к довольно большому классу тиристоров.

Динисторы
Динисторы

Условное графическое обозначение динистора на схемах.

Для начала узнаем, как обозначается динистор на принципиальных схемах. Условное графическое обозначение динистора похоже на изображение диода за одним исключением. У динистора есть ещё одна перпендикулярная черта, которая, судя по всему, символизирует базовую область, которая и придаёт динистору его свойства.

Условное обозначение динистора
Условное графическое обозначение динистора на схемах

Также стоит отметить тот факт, что изображение динистора на схеме может быть и другим. Так, например, изображение симметричного динистора на схеме может быть таким, как показано на рисунке.

Возможное графическое обозначение динистора
Возможное обозначение симметричного динистора на схеме

Как видим, пока ещё нет какого-либо чёткого стандарта в обозначении динистора на схеме. Скорее всего, связано это с тем, что существует огромный класс приборов под названием тиристоры. К тиристорам относится динистор, тринистор (triac), симистор, симметричный динистор. На схемах все они изображаются похожим образом в виде комбинации двух диодов и дополнительных линий, обозначающих либо третий вывод (тринистор) либо базовую область (динистор).

В зарубежных технических описаниях и на схемах, динистор может иметь названия trigger diode, diac (симметричный динистор). Обозначается на принципиальных схемах буквами VD, VS, V и D.

Чем отличается динистор от полупроводникового диода?

Во-первых, стоит отметить, что у динистора три (!) p-n перехода. Напомним, что у полупроводникового диода p-n переход всего один. Наличие у динистора трёх p-n переходов придаёт динистору ряд особенных свойств.

Принцип работы динистора.

Суть работы динистора заключается в том, что при прямом включении он не пропускает ток до тех пор, пока напряжение на его выводах не достигнет определённого значения. Значение этого напряжения имеет определённую величину и не может быть изменено. Это связано с тем, что динистор является неуправляемым тиристором – у него нет третьего, управляющего, вывода.

Известно, что и обычный полупроводниковый диод также имеет напряжение открытия, но оно составляет несколько сотен милливольт (500 милливольт у кремниевых и 150 у германиевых). При прямом включении полупроводникового диода он открывается при приложении к его выводам даже небольшого напряжения.

Чтобы подробно и наглядно разобраться в принципе работы динистора обратимся к его вольт-амперной характеристике (ВАХ). Вольт-амперная характеристика хороша тем, что позволяет наглядно увидеть то, как работает полупроводниковый прибор.

На рисунке ниже вольт-амперная характеристика (англ. Current-voltage characteristics) импортного динистора DB3. Отметим, что данный динистор является симметричным и его можно впаивать в схему без соблюдения цоколёвки. Работать он будет в любом случае, вот только напряжение включения (пробоя) может чуть отличаться (до 3 вольт).

ВАХ симметричного динистора
Вольт-амперная характеристика симметричного динистора

На ВАХ динистора DB3 наглядно видно, что он симметричный. Обе ветви характеристики, верхняя и нижняя, одинаковы. Это свидетельствует о том, что работа динистора DB3 не зависит от полярности приложенного напряжения.

График имеет три области, каждая из которых показывает режим работы динистора при определённых условиях.

  • Красный участок на графике показывает закрытое состояние динистора. Ток через него не течёт. При этом напряжение, приложенное к электродам динистора, меньше напряжения включения VBO – Breakover voltage.

  • Синий участок показывает момент открытия динистора после того, как напряжение на его выводах достигло напряжения включения (VBO или Uвкл.). При этом динистор начинает открываться и через него начинает протекать ток. Далее процесс стабилизируется и динистор переходит в следующее состояние.

  • Зелёный участок показывает открытое состояние динистора. При этом ток, который протекает через динистор ограничен только максимальным током I

    max, который указывается в описании на конкретный тип динистора. Падение напряжения на открытом динисторе невелико и колеблется в районе 1 – 2 вольт.

Получается, что динистор в своей работе похож на обычный полупроводниковый диод за одним исключением. Если пробивное напряжение или по-другому напряжение открытия для обычного диода составляет значение менее вольта (150 – 500 мВ), то для того, чтобы открыть динистор необходимо подать на его выводы напряжение включения, которое исчисляется десятками вольт. Так для импортного динистора DB3 типовое напряжение включения (VBO) составляет 32 вольта.

Чтобы полностью закрыть динистор, необходимо уменьшить ток через него до значения меньше тока удержания. При этом динистор выключиться – перейдёт в закрытое состояние.

Если динистор несимметричный, то при обратном включении («+» к катоду, а «-» к аноду) он ведёт себя как диод и не пропускает ток до тех пор, пока обратное напряжение не достигнет критического для данного типа динистора и он сгорит. Для симметричных, как уже говорилось, полярность включения в схему не имеет значения. Он в любом случае будет работать.

В радиолюбительских конструкциях динистор может применяться в стробоскопах, переключателях мощной нагрузки, регуляторах мощности и многих других полезных приборах.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как проверить стабилитрон мультиметром? — Diodnik

Стабилитрон внешне очень сильно похож на диод, но применение его в радиотехнике совсем иное. В большинстве случаев стабилитроны используют для стабилизации напряжения (в слаботочных схемах). Подключаются они параллельно потребителю. В процессе работы, в случае завышенного напряжения, стабилитрон начинает пропускать ток через себя, таким образом, стабилитрон сбрасывает напряжение на схеме. Стабилитроны в своем большинстве не рассчитаны на большие токи, а при сильных токах они очень быстро нагреваются, и в дальнейшем у них возникает тепловой пробой.

Как проверить стабилитрон мультиметром?

Проверка стабилитрона мультиметром производится по аналогии с проверкой диода. Проверяют стабилитрон фактически любым тестером в режиме проверки диода или в режиме омметра.




Исправный стабилитрон всегда должен проводить ток только в одном направлении, собственно как и диод. Для примера выбраны стабилитроны два стабилитрона: Д814А и КС191У, один из них заведомо с дефектом.

Проверка Д814А. В данном случае стабилитрон, как и диод, пропускает ток, лишь в одном направлении.

Проверка КС191У. Этот стабилитрон явно имеет дефект, т.к. он вообще не способен пропускать через себя ток.

О том, как проверить напряжение стабилитрона, подробно читаем тут.

Как проверить стабилитрон мультиметром на плате?

Проверяя стабилитрон на плате необходимо понимать, что другие радиокомпоненты могут сильно влиять на показания мультиметра или другого прибора. Если есть сомнения в проверяемом экземпляре, тогда лучше всего его демонтировать с платы и проверять отдельно.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как проверить диод Шоттки мультиметром?

Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах, а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода, она проводиться по единому принципу. Единственным моментом будет, который нужно учесть, что диоды Шоттки, используемые в хороших и качественных блоках питания зачастую встречаются сдвоенными в общий корпус и имеют общий катод. И так, сегодня мы расскажем вам, как проверить диод Шоттки мультиметром и выявить все его дефекты?

Как проверить диод Шоттки мультиметром?

Для наглядности мы, проведем небольшую проверку диода Шоттки SBL3045PT. Этот диод от блока питания ПК, рассчитан производителем до 45 В, 30 А. (т.е. по 15 А на каждый диод).




При использовании сдвоенных подобных диодов в выпрямителях необходимо учитывать этот момент, что производитель часто указывает ток на сборку целиком, а не на каждый диод в сборке.

Схематическая проверка сдвоенного диода Шоттки с общим катодом изображена ниже. Мы видим, что поочередно необходимо проверить каждый из двух диодов.

Наглядно продемонстрируем как проверить диод Шоттки мультиметром?


Важно! При проверке диода можно и важно найти дефекты не только обрыв или пробой. Необходимо пытаться учитывать такой неприятный дефект, как небольшая «утечка».

Если мы производили проверку мультиметром с режимом «диод», и выявили вполне рабочий элемент, но у нас есть подозрение подобную на утечку, тогда необходимо попробовать измерять обратное сопротивление диода, предварительно включив на мультиметре режим омметра. На диапазоне «20 кОм» мультиметр должен показывать обратное сопротивление диода как бесконечно большое. Но если тестер показывает даже небольшое сопротивление, например, около 2—3 кОм, тогда к такому диоду необходимо относиться с большим подозрением и лучше сразу заменить новым.

Одним из самых больших недостатков у диодов Шоттки является то, что они моментально выходят из строя при превышении допустимого напряжения. Учитывая все моменты при самостоятельном ремонте импульсных блоков питания, в случае обнаружения дефектных диодов и после их замены, сразу же необходимо проверять на исправность все силовые транзисторы.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Особенности проверки транзистора мультиметром без выпаивания

Проверка транзистораРадиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Как мультиметром проверить транзистор не выпаивая

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Как прозвонить транзистор мультиметром Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Как прозвонить транзисторТранзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Как проверить транзисторИх схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Как проверить полевой транзистор мультиметром не выпаиваяТак как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

  • Как проверить тестером транзисторопределить сопротивление участка «сток — исток» закрытого транзистора;
  • произвести открытие перехода;
  • определить сопротивление открытого полевика;
  • произвести закрытие перехода;
  • повторно сделать замер сопротивления закрытого полевого транзистора.

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Как прозвонить транзистор Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Как мультиметром проверить транзистор

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Как проверить полевой транзистор мультиметром Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

Записи созданы 7189

Отправить ответ

avatar
  Подписаться  
Уведомление о

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх